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The probability per unit of time that an electronically excited molecule will fluoresce is independent of its age, but the 
probability per unit of time for a bimolecular quenching reaction decreases with increasing time after excitation. Since in 
an illuminated solution the average age of excited molecules is decreased by increasing the concentration of quencher, the 
apparent rate constant for the quenching reaction should increase. The equations for this effect are developed in detail, 
and it is shown that the predicted concentration dependence of the quenching constant is experimentally accessible if the 
rate of the quenching reaction is determined by the diffusion of reactants together. Data from the previous literature 
covering a wide range of rate constants indicate a concentration dependence of the quenching constants that is uniformly 
about twice that predicted by the theory. Measurable effects depend only on macroscopic diffusion coefficients independent 
of the magnitudes of individual displacements. Therefore, detailed information about diffusive motion is not accessible 
from the time dependence of the reactivity of molecules that have been produced singly. 

Introduction 
If a reference molecule has existed for a finite 

time in a solution containing molecules capable of 
reacting with it, there is less chance of finding a 
potential reactant near the reference molecule than 
near a random position in the solution, and the 
probability of reaction of the reference molecule 
per unit of time is less than the a priori probability 
at the time it was formed. 

In a previous paper,1 we have shown how the 
time-dependence of the reactivity of a molecule can 
be described in terms of the behavior of an isolated 
pair of molecules in the same solvent. The pres
ent paper applies to the competition for a refer
ence molecule between a time-independent uni
molecular process and a bimolecular process 
(whose probability is necessarily a function of 
time). Quenching of fluorescence is probably the 
best example of such a situation, and our equations 
are derived for this case. However, the results are 
applicable without modification for any situation 
in which uni- and bi-molecular processes compete 
to determine the fates of reactive molecules. 

The study was undertaken in the expectation 
that by measuring the concentration dependence 
of the quenching constant one could use the ex
cited molecule as a probe to study the magnitudes 
of diffusive displacements in its immediate neigh
borhood. In the last section, we discuss the failure 
to obtain microscopic information from such meas
urements. 

Mathematical Development 
Formulation of Problem.—If a solution contain

ing absorbing molecules, A, and quencher mole
cules, Q, is illuminated, the fluorescent intensity is 
proportional to the instantaneous concentration of 
activated molecules, A*. If the quenching proc
ess does not involve a chemical reaction or if the 
concentrations of A and Q are great enough that 
they do not change significantly during an experi
ment, a steady state is set up for the following proc
esses 

Process Rate 
A + hv—^A* 
A* *~K + hv' kt{A*l 
Q + A* S- quenching fc,(av)[Q] [A*] 

(1) R. M. Noyes, J. Chem. Phys., 22, 1349 (1954). 

The rate constant for quenching, kq, depends on 
the age of an excited molecule, and &q(av) has been 
averaged over all the excited molecules present in 
the solution at any instant. 

If / is the fluorescent intensity observed from the 
solution and if a following superscript 0 denotes a 
value at zero concentration of quencher, it is custom
ary to define a quenching constant, kex, having 
dimensions of reciprocal concentration (but not 
time) and defined by the expression 

PIf — 1 
*" [QT- * , ( av ) /*£ ( 1 ) 

According to conventional kinetics, kq is inde
pendent of the age of an excited molecule and kex 
is independent of concentration of quencher. How
ever, as the concentration of quencher increases, 
the average age of the excited molecules in the solu
tion will go down, and our previous treatment1 sug
gests that kq (av) and keK should increase. 

In order to treat the anticipated concentration 
dependence, let 5 be the probability that an A 
molecule that was excited at time zero is still ex
cited at time t. 

- ^ •» i iS + JMQ]S (2) 

As indicated above, kt is independent of time but 
kq may not be. If the concentration of quencher 
is constant during an experiment, we can integrate 
to 

- \kit + [Q] / k dt'y 

S = « 1 " J o S (3) 
where t'isa. time between zero and t. 

If a solution has been illuminated long enough to 
establish a steady state 

where the integrals are taken over past time and 
involve the probability of fluorescence at the pres
ent of molecules excited at time t previously. If 
ka is independent of time, equation 4 rearranges 
easily to equation 1. 

The time dependence of kq is given by1 

K = »fe„(l - f'h(t') dt') (5) 
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where a preceding superscript 0 denotes a value at 
zero time. Here h(t) dt is the probability that an 
isolated pair consisting of a quencher molecule and 
an excited molecule (that does not fluoresce) ini
tially separated as though they had undergone a 
non-quenching encounter at time zero will undergo 
a quenching reaction between t and t + dt. The 
integral of h(t) over all times is less than unity, 
and we have used the definition 

/3' = C"hit) dt (6) 

It is also convenient to define the function 

zw - SXh{n dt"dt' (7) 

where t" is a time between zero and /'. Then 
equation 3 can be rewritten 

5 = e - (ft/ + "MQ] Ne1*, [Q] 2«) ( 8 ) 

The solution of these equations depends upon 
the form of h(t). At long times, it is inversely pro
portional to t'/s, but this form cannot be valid at 
very short times. In the following sections, the 
problem is treated by two approximation formulas 
for h(t) which have been discussed elsewhere.2 

The discontinuous function permits an almost ex
act mathematical solution, while numerical methods 
are necessary for the more plausible continuous 
approximation. 

Solution by Discontinuous Approximation.—The 
discontinuous function 

h(t) = 0 t< 4a2/{3'* (9) 
= a/t'/t t > 4a2//3'2 

is the simplest approximation for h(t) that fits the 
long-time behavior and also satisfies equation 6. 
In this equation, a is a constant having dimensions 
sec.1/!; its dependence on more fundamental par
ameters has been discussed previously.2 

For this function 

Zd{t) = 0 t < 4a2//3'2 (10) 
= /37 - iat'h + 4a7/3 ' t > 4o7 /3" 

where the subscript d indicates the discontinuous 
approxi tnation. 

Application to equations S and 4 gives 

f/p = ^/e4o'«A,[Q]//3' f °° e~ {kf + 'Ml - 0')[Q]\t - ia°ka[Q]tl/2 

/•4oV0'J 

dt + kf\ e -{*f+ 0MQlI/ [1 -

eB'"kalQ]l - 4a°MQN!/2 + 4os°MQl/0'] dt (11) 

The second integral is not exactly soluble but can 
be expanded in powers of k[a2//3'2 and °kq[Q]a2/ft'2. 
We shall see later that these quantities are 
less than unity. Such a solution of the second in
tegral involves only terms in a4 and higher orders. 
Since the continuous and discontinuous approxi
mations differ in the a2 terms, the second integral 
in equation 11 is without significance and can be 
totally neglected. 

The first integral is exactly soluble. Let 

, 40°UQ] 
{Af + 'Wl-OOIQ])' 

(12) 

Then integration of equation 11 gives 
kiebV* + 4oM*q[Q]//s' 

///° = (1 - \Tvb/2) (13) 
k, + o*q(l - /8')[Q] 

If quenching is an activation controlled process, 
terms in a and /J' become vanishingly small and 
equation 13 reduces to the conventional kinetic 
expression for quenching of fluorescence. 

Solution by Continuous Approximation.—The 
theory of random flights3 predicts that the prob
ability of finding a particle near its initial position 
at time t later is given by ce~c'/i/t''/' where c and 
c' are constants. If h(t) fits this form and satis
fies equation 6, we can write the continuous func
tion 

-Ta'/0"-t 

m - ^ 7 7 - (I4) 

where a is the same constant as in equation 9. 
If we let the subscript c denote this continuous 

approximation 

zc(0 = /3't - 13'Tlx dt' (15) 

where the probability integral 

(2/ 
' / ; 

e~*2 dx 

and 

= - A - -

(16) 

(17) 

(2) R. M. Noyes, THIS JOURNAL, 78, 5486 (1956). 

We have not developed an exact solution for f/f 
in terms of this function, but we have been able to 
treat the difference between the two approximations. 
Zc — Zd is positive at all times and approaches a 
limiting value of 2.283a2//3' at long times. If we 
assume that the time to approach this value is 
short compared to the average life-time of an ex
cited molecule, 5 in equation 11 will be increased 
by a constant factor of e'MQ] [2=<») - 2d(»)] a n ci 
equation 13 becomes 

^.gb'/i -f- 6.28s*1*, [ Q ] / f r-

The true situation should be intermediate between 
equations 13 and 18 and probably considerably 
closer to (18). We shall see below that the differ
ence is a second order effect and probably without 
experimental significance. 

Concentration Dependence of Quenching Con
stant.—Equation 18 can be written in terms of the 
following three parameters, all of which have di
mensions of reciprocal concentration. 

/ = o*,(l - s')/h (19) 
K = a«kJks'A (20) 
L = a«kJP' (21) 

The parameter J describes the competition be
tween quenching and fluorescence of excited mole
cules so "old" that the concentration gradient of 
potential quenchers is independent of time. Here, 
0^q(I — B') is the "long-time" rate constant for 
quenching. If the reaction is diffusion controlled, 
J is concerned with times so long that it is permis
sible to apply the Fick's first law treatment for 
steady-state diffusion into a sink. 

(3) S. Chandrasekhar. Rev. Modern Phys., 15, 1 (1943). 



Feb. 5, 1957 QUENCHING OF FLUORESCENCE IN SOLUTION 553 

The parameter K relates to competition of 
fluorescence with the rate of establishment of the 
steady-state concentration gradient; it is con
cerned with times during which Fick's second law 
must be used to describe changes in concentration 
near the excited molecule. 

Fick's laws, and similar treatments in which dif
fusion is treated as a continuous process, predict an 
infinite initial flux when a diffusion sink (such as a 
reactive molecule) is suddenly created in a solution 
of uniform concentration. The parameter L is con
tained in transient correction terms dealing with 
the period of a few molecular displacements before 
it is permissible to describe the situation even with 
Fick's second law. 

ing equations, all of which also have been dis
cussed previously.1'2 

«3 

1 - + 
2 

ok = 

1 + 3P/<7 

3ap2(l - 0')2 

100O0 

(23) 

(24) 

(25) 

(26) 

The rate of the quenching reaction may be con
trolled either by the diffusion together of reactive 
molecules, or by the passage over a free energy po-

TABLB I 

QUANTITIES EXPRESSED IN TERMS OF FUNDAMENTAL PARAMETERS 

Type of control 
Magnitudes of displace

ments 
Mathematical descrip

tion of conditions 

a/P' 

o / d - /9') 

M = °*„(1 - 0' 

Diffusion 

Large 

Diffusion 

Small 
ot >>c/p 
c « p 

3 p V 

Large 
a « 1 

3o« 

Activation 

Small 
a < < a/p 
c « p 

Intermediate 

Intermediate 
0 < a < 1 
(T K P 

3p'<r 

V*D(9p' 
Zp' 

*«) 
2VVD(3p + «•) 
_ 12n p*DN 
1000(30 + <r) 

2%/TD(3P 

3ap* 
2y/*D \^TD(3ap + 2<r -

3ap2 
%c) (3p — <r) 

6wap'DN 
lOOOo-

6irqpaP.V 
lOOOo-

/ 3p! V A , , , , / 3 a , » \ ' / ! /aap'\'/' , / 3ap' V , 

(am) VAVIOOOP'AVivviooo^J Vif/iooo(-^) V-v/iooo(^3ap + 2r _ a j J 

2WD(3ccp + 2c - an) 
12ir«p'D.V 

1000(3ap + 2a - an) 

3ap* \ V « 

ai*kj$' aip'cN 
1000(3p + o-)>(3p • 

2_p'cN 
30OTa 

27aViy 
4000,r2(3p - <r) 

9a»pW 
4000 cr* 

3ap + 2c 

bia'f'cN 

V/V/IOOO 

1000(3op + 2<r - •ac)'(3p - ^) 

If these parameters are employed when sub
stituting equation 18 into equation I, we obtain 

l + / [Q] _ 1 
*«[Q] 

' _ 2 V ^ [ Q ] \ T+7[Ql +6-28Lra 
v 1 + J[Qi; ' 

(22) 

Unless the quenching reaction is so efficient that 
its rate is determined chiefly by the rate at which 
reactants can diffuse together, the parameters K 
and L will be vanishingly small and this rather 
terrifying expression reduces to the conventional 
&ex = J-

Discussion 
Magnitudes of Parameters.—Equation 22 is a 

refinement of conventional kinetic expressions and 
predicts that the quenching constant determined by 
experiment should be a function of the concentra
tion of quencher even if the solution is behaving 
ideally in a thermodynamic sense. However, it is 
necessary to examine the probable magnitudes of 
the parameters to determine whether the antici
pated concentration dependence of the quench
ing constant is apt to be of experimental signifi
cance. 

In addition to the symbols defined above, we 
shall use the following symbols, all of which have 
been discussed in more detail in previous papers.1'2 

P = encounter diameter 
o- = root-mean-square diffusive displacement distance 
v = frequency of relative diffusive displacements 
D = J<O-2/6 = coefficient for relative diffusion 
a = probability of reaction during an encounter 

tential barrier (activation control). Also, it has 
not yet been established4 whether diffusive dis
placements in liquids are large (of the order of a 
molecular diameter) or much smaller. Table I ex
tends a table in a previous publication2 to provide 
expressions under different types of rate control 
for the quantities of importance in the present 
problem. 

If an approximately linear response is received 
from the device used to measure fluorescent inten
sity, then / / / ° should lie roughly between 0.1 and 
0.9 to obtain the best accuracy in kex. This means 
that 0.1 <&ex[Q]<10 must be approximately ful
filled. If we arbitrarily set one mole per liter as 
the maximum concentration of quencher satisfac
tory for tests of equation 22, kex should not be less 
than 0.1 but may be greater. Data reported in the 
literature indicate values of kex and hence of / in 
the range 10 to 150 liter/mole. 

If the quenching reaction is diffusion controlled 
and if diffusive displacements are small, Table I 
indicates that K = 0.274/'/* liter/mole for the 
situation p = 5 X 1O-8 cm. This value depends 
very little on the magnitude of diffusive displace
ments. Substitution of these values of J and K 
into equation 22 indicates that kex should vary 
significantly with concentration of quencher even 
for values well below 0.1 mole/liter, so the proposed 
equation is susceptible to experimental test. 

The parameter L will have its maximum value 
for diffusion control with large displacements. 
For a = 1 and p = o- = 5 X 10~8 cm., L = 0.0318 
liter/mole. For quencher at 1 mole/liter, the 

The various quantities are related by the follow- (4) R. M. Noyes, /. chem. Phys., 23,1982 (1935). 
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term e6-28L[Qj could not contribute more than 20% 
to kex, and effects even at this concentration would 
be hard to separate from those of activity coeffi
cients different from unity. Also, if diffusive dis
placements are less than a molecular diameter, L 
will be correspondingly smaller. Therefore, al
though terms in K are significant, it appears that 
at least for the present the term in L in equation 22 
is without experimental significance. 

Comparison with Experiment.—We are aware 
of two sets of quenching experiments in which 
kex was measured as a function of concentration. 
Bowen and Metcalf5 studied the quenching of 
anthracene by carbon tetrabromide in a series of 
hydrocarbon solvents varying over 200-fold in vis
cosity. Values of kex varied more than 10-fold 
with change of solvent but always tended to in
crease with increasing concentration of quencher. 
The authors ascribed this effect to a complex be
tween anthracene and carbon tetrabromide, but 
application of this explanation to data with other 
quenchers required the implausible assumption 
that the degree of association increased with in
creasing temperature. 

Williamson and La Mer6 observed a similar effect 
in the quenching of uranin by aniline and ascribed 
the variation semi-quantitatively to the same type 
of cause discussed here. 

Data from both of these studies were fitted by 
least squares to an equation of the form 

kex = £e*° + V[Q] (27) 

If equation 22 is expanded as a power series in [Q] 
neglecting all terms of higher order and also neg
lecting the term in L, one obtains 

£e*° = / + 2VIrK (28) 

( l fe ] ) 0 = ^*KJ + 4(T " 1)K* (29) 

The use of linear equation 27 is not strictly justi
fied for the larger values of / [Q] in some experi
ments, and experimental values of U from least 
squares are somewhat less than values of (dkex/ 
d[Q])° to be anticipated from a more refined treat
ment. However, the difference is not important 
for the type of comparison undertaken here. 

The results are presented in Table II. The 
quantities kex° and Z70bsd come from the least squares 
fit of the data to equation 27. Values of iVcaicd are 
obtained from values of &ex° on the assumptions 
that the quenching reaction is diffusion controlled, 
that diffusive displacements are small, and that 
the encounter diameter is 5 A. As is shown above, 
these assumptions lead to K = 0.274 T^, and a 
value of kex° is sufficient to calculate J, K and 
(d W d [Q])" = Scaled. 

The data in Table II cover a range of 11-fold in 
&ex° and of 25-fold in U obtained by two inde
pendent sets of investigators for two different 
quenching reactions. The treatment developed 
here successfully describes relative changes in U 
over the entire range but consistently predicts 
values about half of those observed experimentally. 
It might appear that more quantitative agree-

(5) E. J. Bowen and W. S. Metcalf, Proc. Roy. Soc. (London), 206A, 
437 (1»S1). 

(6) B. Williamson and V. K. La Mer, THIS JOURNAL, 70, 717 (1948). 

ment could be obtained by assuming a larger value 
for the encounter diameter. However, applica
tion of experimental values of &ex° and U to equa
tions 28 and 29 frequently leads to imaginary values 
for J and K. We have not been able to find any 
algebraic error in the derivations, but we find the 
fit of relative U values is so impressive that we be
lieve the ideas developed here deserve further con
sideration. 

TABLE II 

COMPARISON WITH EXPERIMENT 

l./mole 

124.6 
HO.2 
93.0 
76.4 
49.4 
35.34 
22.05 
21.30 
11.64 
16.16 

l.Vmole' 

Bowen and Mf 

953 
785 
853 
46S 
355 
202 
157 
133 
38.4 
60.7 

tVcalcd, 
l.Vmole* 

;tcalf5 data 

671 
556 
431 
320 
166 
100 
48.7 
46.2 
18.4 
30.3 

U "<"*.• ( ' o h 

0.70 
.71 
.51 
.68 
.47 
.49 
.31 
.35 
.48 
.50 

Williamson and La Mer6 data 

23.12 86.7 52.4 0.60 

Application to Theory of Liquids.—This study 
was undertaken in the hope that an electronically 
excited molecule could be used as a probe to test 
a small region of solution for a short time and there
by to obtain evidence concerning the nature of 
diffusive motions in liquids. Only hindsight re
veals the futility of this expectation. At times 
sufficient for more than a very few molecular mo
tions, equation 5 can be written 

kq = »£q(l - 0' + 20./I1A) (.30) 

At long times, c£q(l — /3') for a diffusion controlled 
reaction can be related to the rate of diffusion into 
a sink; its value is determined essentially by the en
counter diameter and the macroscopic diffusion co
efficients of the species. The parameter J is con
cerned with quenching of molecules that are old 
enough for this situation to apply. 

Since the parameter a depends directly upon the 
size of molecular displacements,2 it seemed that 
the time dependence of reactivity would also de
pend on this quantity. However, an examination 
of Table I will show that °&qa is virtually independ
ent of the size of diffusive displacements. The 
parameter K is concerned with changing reactivity 
at times when equation 30 is applicable to the rate 
of establishment of the steady-state gradient in 
concentration. For a diffusion controlled reaction, 
the value of K depends on exactly the same quanti
ties that determine J. This dependence explains 
the failure of the original expectation, and it also 
explains why for a specified encounter diameter 
only one disposable parameter is sufficient to de
fine the value of kex at any value of [Q]. 

The parameter L does depend directly on the 
magnitudes of diffusive displacements, but it is 
concerned with times of the order of those for 
individual displacements and describes deviations 
from equation 30. We have already seen that even 
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the order of magnitude of L seems beyond experi
mental accessibility. 

Because °&q(l — /3') and °kqa are both virtually 
independent of or, it does not appear that any infor
mation about detailed microscopic behavior in 
liquids is obtainable from kinetic measurements on 
reactive molecules that are produced singly. The 
best hope for obtaining such information continues 
to lie with situations in which reactive species are 
produced in pairs.2'7 
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Since the freezing point of pure heavy water is 
3.80° higher than that of ordinary water,1'2 it 
might be expected that a partial separation of the 
two isotopic hydrogen species could be accom
plished by freezing. This observation has led to 
several investigations, with varying results. Bru-
ni,3 Chang,4 Dezelic,5 and La Mer, Eichelberger 
and Urey6 report that no measurable separation 
occurs. Gilfillan7 reported enrichment of deu
terium in the ice phase when natural water was 
partly frozen. Teis and Florensky8 reported en
richment of deuterium in the liquid phase under 
similar circumstances. However Teis9 later stated 
that these results were in error, and reported that 
when snow melts, the deuterium is concentrated 
in the ice phase. 

La Mer and Baker10 and Eucken and Schaefer1'2 

calculated the equilibrium concentrations of deu
terium in the ice and water phases. The values of 
the separation factor calculated from the data of 
those investigators at deuterium concentrations 
near those of this work (approximately 20%) were 
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ment of the isotopic compositions of the two 
phases. 

The very slow rate of diffusion of water molecules 
in the liquid phase causes true equilibrium separa
tion to be difficult to obtain. According to Wang, 
Robinson and Idelman,11 the diffusion coefficient of 
HDO in water is only 1.57 X 10~6 cm.2 sec. -1 at 
10°, and decreases as the temperature is lowered. 
As ice crystals grow in a freezing mixture, the 
water adjacent to their surface becomes depleted 
in deuterium as compared to the bulk of the liquid, 
and the concentration of deuterium in the ice 
formed will correspond to this reduced concentra
tion. Therefore, the observed separation, as based on 
the bulk composition of the phases, will be less than 
the true value. This effect can be reduced by the 
use of vigorous agitation and very slow freezing 
rates. 

Even with vigorous agitation a layer of water will 
remain motionless at the ice-water interface. As 
the distance from the solid increases the motion of 
the liquid increases so that this layer has no defi
nite outer boundary. However, for purposes of 
mathematical analysis the film may be considered 
to be equivalent to a film of a definite thickness, 
B. This assumption is often made in engineering 
calculations.12 

The true separation factor a0, and the observed 
separation factor, a, are defined by the equations 

a° ~ *'(1 - y) ^ 
and 

a = 4f^i) (2) 
*( l - y) 

(11) J. H. Wang, C. V. Robinson and I. S. Idelman, ibid., 75, 446 
(1953). 

(12) W. L. Badger and W. L. McCabe, "Elements of Chemical Engi
neering, McGraw-Hill Book Co., Inc., New York, N. Y., 1936, p. 246. 
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The Equilibrium Distribution of Light and Heavy Waters in a Freezing Mixture 
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The equilibrium distribution of the deuterium content of a mixture of light and heavy water between the solid and liquid 
phases has been determined. The deuterium concentrates in the ice phase. The separation factor, a, in solutions containing 
approximately 18 mole % of the total hydrogen as deuterium was found to be 1.0211 ± 0.0007. 


